New quasi-Newton methods via higher order tensor models

نویسندگان

  • Fahimeh Biglari
  • Malik Abu Hassan
  • Wah June Leong
چکیده

Many researches attempt to improve the efficiency of the usual quasi-Newton (QN) methods by accelerating the performance of the algorithm without causing more storage demand. They aim to employ more available information from the function values and gradient to approximate the curvature of the objective function. In this paper we derive a new QN method of this type using a fourth order tensor model and show that it is superior with respect to the prior modification of Wei et al. (2006) [4]. Convergence analysis gives the local convergence property of this method and numerical results show the advantage of the modified QN method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Newton-Based Optimization for Nonnegative Tensor Factorizations

Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...

متن کامل

Newton-based optimization for Kullback-Leibler nonnegative tensor factorizations

Tensor factorizations with nonnegative constraints have found application in analyzing data from cyber traffic, social networks, and other areas. We consider application data best described as being generated by a Poisson process (e.g., count data), which leads to sparse tensors that can be modeled by sparse factor matrices. In this paper we investigate efficient techniques for computing an app...

متن کامل

Tensor-Krylov Methods for Solving Large-Scale Systems of Nonlinear Equations

This paper develops and investigates iterative tensor methods for solving large-scale systems of nonlinear equations. Direct tensor methods for nonlinear equations have performed especially well on small, dense problems where the Jacobian matrix at the solution is singular or ill-conditioned, which may occur when approaching turning points, for example. This research extends direct tensor metho...

متن کامل

Practical inexact proximal quasi-Newton method with global complexity analysis

Recently several methods were proposed for sparse optimization which make careful use of second-order information [11, 34, 20, 4] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011